

DOCUMENT TYPE:	Standard Operating Procedure		
DOCUMENT CLASS:	SS: Physical Property Procedure		
TITLE:	Conductivity, EPA 120.1		
INSTRUMENTATON:	HACH CO150 Conductivity Meter		
PREPARED BY:	Marshall K. Cheung, Ph.D., Laboratory Director		
REVISED BY:	Marshall K. Cheung, Ph.D., Laboratory Director		
REVIEWED BY:	Anne Cheung, Laboratory Manager		
APPROVED BY:	Marshall K. Cheung, Ph.D., Laboratory Director		

Table of Contents

1.	Scope and Application	.3
2.	Summary of Method	3
3.	Comments	3
4.	Sample Handling and Preservation	3
5.	Apparatus	3
6.	Reagents/Supplies	3
7.	Procedure	.4
8.	Calibration Curve	. 5
9.	Bibliography	6
10.	Calibration Curve	7

Document No.:	<i>PP 002 - 014</i>
Copy provided to:	Marshall K. Cheung
Title:	Laboratory Director
	29 Palms Laboratory
	47-250 Dillon Road
	Coachella, CA 92236
Copy provided by:	Jan Kilduff
Title:	Quality Assurance Officer
Date:	July 28, 2004

29 Palms Laboratory 47-250 Dillon Road Coachella, Ca 92236 Phone: 760-398-0050 Fax: 760-398-0028 Title:Conductivity, EPA 120.1Number:PP002Release Date:4/27/00Revision Date:11/06/01Version:2.0

1. Scope and Application

1.1. This method is applicable to the analysis of drinking, surface and saline waters, domestic and industrial wastes and acid rain (atmospheric deposition).

2. Summary of Method

- 2.1. The specific conductance of a sample is measured by use of a self-contained conductivity meter, Wheatstone bridge-type, or equivalent.
- 2.2. Samples are preferably analyzed at 25°C. If not, corrections for temperature are made and result reported at 25°C.

3. Comments

- 3.1. Instrument must be standardized with certified calibration solutions before use daily.
- 3.2. Conductivity cell must be kept clean.
- 3.3. Temperature variations and corrections represent the largest source of potential error.
- 3.4. Results are reported as specific conductance, μ S/cm at 25°C.

4. Sample Handling and Preservation

- 4.1. Analyses can be performed either in the field or laboratory.
- 4.2. If analysis is not completed within 24 hours of sample collection, sample should be filtered through a 0.45µm filter and stored at 4°C. Filter and apparatus must be washed with reagent water and pre-rinsed with sample before use.

5. Apparatus

- 5.1. *HACH* CO150 Conductivity Meter
- 5.2. HACH Model 50161 Conductivity Probe

6. Reagents/Supplies

- 6.1. Calibration Standards
 - 6.1.1. VWR traceable ONE-SHOT conductivity calibration standard 100 μmhos/cm with certificate of analysis (Cat. No. 23226-651)
 - 6.1.2. VWR traceable ONE-SHOT conductivity calibration standard 1000 μmhos/cm with certificate of analysis (Cat. No. 23226-652)
 - 6.1.3. VWR traceable ONE-SHOT conductivity calibration standard 10,000 μmhos/cm with certificate of analysis (Cat. No. 23226-653)
- 6.2. Continuous Calibration Check Standard (CCV)
 - 6.2.1. VWR traceable ONE-SHOT conductivity calibration standard (second bottle different from Calibration Standard 6.1.2) 1000 μmhos/cm with certificate of analysis (Cat. No. 23226-652)
- 6.3. Ricca Deionized Water (Cat. No. 9150-5)
- 6.4. Kimberly-Clark Kimwipes EX-L (Cat. No. 34120)

29 Palms Laboratory 47-250 Dillon Road Coachella, Ca 92236 Phone: 760-398-0050 Fax: 760-398-0028

7. Procedure

- 7.1. *Instrument Setup* (Refer to the *HACH* CO150 Manual)
 - 7.1.1. Power-up and Self-Diagnostics Checkout
 - 7.1.1.1. Disconnect the conductivity probe from the meter.
 - 7.1.1.2. Press **I/O** key to turn the meter on.
 - 7.1.1.3. Install 9V battery when low battery indicator appears on the display.
 - 7.1.1.4. Press I/O key to turn the meter off.
 - 7.1.1.5. Press and hold the **YES** key while pressing the **I/O** key.
 - 7.1.1.6.The instrument automatically performs electronic and hardware diagnostic tests, and a system countdown will display 1-8.
 - 7.1.1.6.1. If *E*-3 appears in the display, check to make sure the conductivity probe is not attached.
 - 7.1.1.7.The meter will stop on test 7.
 - 7.1.1.7.1. When "0" is displayed, press each key (including the I/O key within 10 seconds to complete this test.
 - 7.1.1.7.2. The numeric digits will change.
 - 7.1.1.7.3. If all keys are not pressed within 10 seconds, or if a key is not responding properly, *E*-7 will appear.
 - 7.1.1.7.4. If problems are found during self-test, the meter will display the error code until YES is pressed.
 - 7.1.1.7.5. Refer to Table 10 Error Codes on page 31 of the instrument manual.
 - 7.1.1.7.6. If there is an error, begin Power-up and Self-Diagnostics Checkout (7.1.1) again.
 - 7.1.1.8. After the keypad test (7), the meter will display test 8 and then the meter will turn off.
 - 7.1.2. Instrument Setup
 - 7.1.2.1. Press the **I/O** key.
 - 7.1.2.2. Press the **SETUP** key to enter the setup menu.
 - 7.1.2.3.Turn automatic temperature compensation (S-1) to "ON" using an **ARROW** key and then press the **YES** key.
 - 7.1.2.4. Set the reference temperature (S-2) to 25°C using an **ARROW** key and then press the **YES** key.
 - 7.1.2.5. Set the temperature compensation (S-3) to 25°C using an **ARROW** key and then press the **YES** key.
 - 7.1.2.6.Turn automatic Auto Shutoff (S-4) to "ON" using an **ARROW** key and then press the **YES** key.
 - 7.1.2.7.Return to measure mode by pressing **MODE** key.
 - 7.1.3. Install conductivity probe.
 - 7.1.4. Thoroughly rinse conductivity probe with deionized water and blot with Kimwipe.
 - 7.1.5. Instrument is ready for calibration.
- 7.2. Instrument Calibration
 - 7.2.1. Allow the 100, 1000 and 10,000 μ S/cm standard solutions to come to room temperature (20 30°C).
 - 7.2.2. Using the **MODE** key set the meter to "Cond" mode.
 - 7.2.3. Place the conductivity probe into the 1000 μ S/cm standard solution.

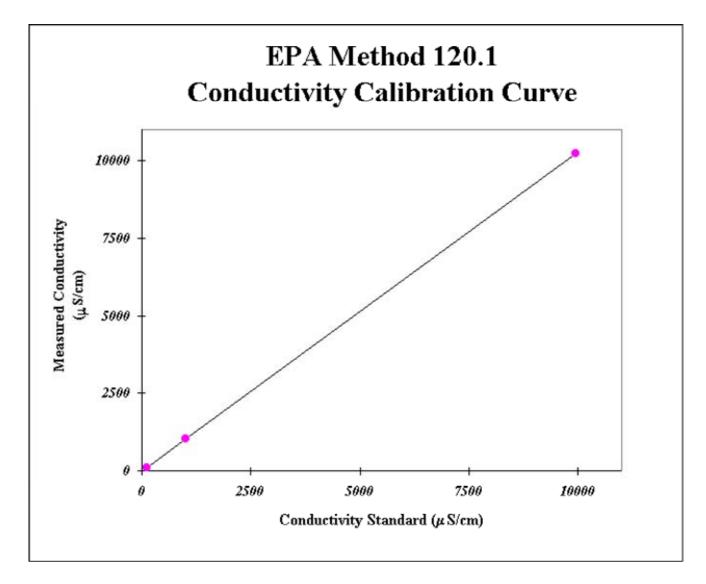
- 7.2.3.1. Immerse the tip to or beyond the vent holes.
- 7.2.3.2. Agitate the probe vertically to make sure air bubbles are not entrapped.
- 7.2.4. If the reading differs from the certified value listed on the bottle by more than 10%, a calibration is necessary.
- 7.2.5. To calibrate, an adjustment value must be entered.
- 7.2.6. To approximate an adjustment value, subtract 40 μ S from displayed value if standard temperature is below 25 °C and add 40 μ S to displayed value if standard temperature is above 25 °C.
- 7.2.7. Press CAL key three (3) times to enter screen for entering adjustment value (display should read 1999).
- 7.2.8. Use **ARROW** keys to change digits followed by the **YES** key to enter.
- 7.2.9. After the last digit is entered, the meter will automatically begin calibration and display the adjusted value of the calibration standard solution at the reference temperature.
- 7.2.10. Continue increasing or decreasing adjustment value until displayed value is within 10% of certified value.
- 7.2.11. Record the temperature and the calibrated result.
- 7.2.12. Record the values for 100 and 10,000 μ S/cm standards.
- 7.2.13. Prepare calibration curve (See 8. *Calibration Curve*).
- 7.2.14. Measure conductance of a 1000 μ S/cm standard (different from standard used to calibrate) as a calibration verification standard *(initial calibration verification -ICV)* to verify validity of curve.
 - 7.2.14.1. If the conductivity of the ICV is within 10% of the expected value based on the calibration curve, the calibration is verified. Continue with sample measurement (7.3).
 - 7.2.14.2. If the conductivity of the ICV differs by more than 10% from the expected value, see corrective action in 8.7.
- 7.3. Take sample measurements.
 - 7.3.1. Allow samples to come to room temperature $(20 30^{\circ}C)$.
 - 7.3.2. Thoroughly rinse conductivity probe with deionized water and dry with Kimwipe.
 - 7.3.3. Insert rinsed and dried probe into sample.
 - 7.3.4. Record the conductivity value and the temperature of samples.
 - 7.3.5. Analyze the 1000 μS/cm calibration verification standard (*continuing calibration verification CCV*) with every ten samples to re-check the validity of the calibration curve.
 7.3.5.1.If the CCV is within 10% of the expected value, continue with sample analysis.
 7.3.5.2.If the CCV differs by more than 10%, see corrective action in 8.7.

8. Calibration Curve

- 8.1. Obtain a standard curve by plotting the three calibration standard values that were run by the above procedure against expected conductivity in μ S/cm.
- 8.2. Perform regression analysis of calibration data to evaluate correlation.
- 8.3. Plot best-fit line.
- 8.4. For the curve to be valid, the correlation of points with the residual line must meet following criteria:
 - 8.4.1. Relative percent standard deviation of the response factor (RF) must be less than 15%.
 - 8.4.2. R^2 must be greater than or equal to 99%.

- 8.4.3. If the relative percent standard deviation of the RF is greater than 15% or the R² value is less than 0.99, then the calibration standards must be reanalyzed to achieve an acceptable curve.
- 8.5. Prior to sample analysis, calibration verification (*initial calibration verification –ICV*) is performed (7.2.14).
- 8.6. During sample analysis, calibration verification (*continuing calibration verification-CCV*) is done at a frequency of 10% (7.3.6).
- 8.7. The order of corrective action for Calibration Verification Standard problems are:
 - 8.7.1. If the Calibration Verification Standard (ICV or CCV) does not come within 10% of the expected value, then the standard should first be rerun.
 - 8.7.2. If the repeat analysis result still differs by greater than 10%, a fresh standard should be prepared and analyzed.
 - 8.7.3. If the fresh standard does not meet the criteria, a new calibration must be performed.

9. Bibliography


- 9.1. HACH CO150 Conductivity Meter Manual
- 9.2. EPA Method 120.1
- 9.3. Standard Methods for the Examination of Water and Wastewater, *20th Edition*, Method No. 2510, p 2-44 to 2-47, (1998).

29 Palms Laboratory 47-250 Dillon Road Coachella, Ca 92236 Phone: 760-398-0050 Fax: 760-398-0028

Title:	Conductivity, EPA 120.1
Number:	PP002
Release Date:	4/27/00
Revision Date:	11/06/01
Version:	2.0

10. Calibration Curve

Conductivity Standard	Measured Conductivity	Check Date:9/8/00 Standard
(µS/cm)	(μS/cm)	
109	105	<i>Std. Dev.</i> =0.040
998	1032	1009 <i>Relative % Std. Dev.</i> =3.92
9959	10241	
		$R^{2}=1.000$
		<i>m</i> =1.028
		<i>y-intercept</i> =0.000